Affiliation:
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract
Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The 2-gNWF fabric comprises a porous fibrous upper layer and a dense conductive film-like lower layer, specifically designed to enhance EMI shielding through the combined mechanisms of reflection, multiple internal reflections, and absorption of electromagnetic waves. The 2-gNWF exhibits a remarkable EMI shielding effectiveness (SE) of 80 dB while maintaining an impressively low density of 0.039 g/cm3, surpassing the performance of many existing graphene-based materials. The excellent EMI shielding performance of 2-gNWF is attributed to the multiple interactions of incident electromagnetic waves with its highly conductive network and porous structure, leading to efficient energy dissipation. The combination of high EMI SE and low density makes 2-gNWF ideal for applications that require lightweight yet effective shielding properties, demonstrating the significant potential for advanced EMI shielding applications.
Funder
National Natural Science Foundation of China