Graft–Host Interaction and Its Effect on Wound Repair Using Mouse Models

Author:

Garcia Nicole12,Rahman Md Mostafizur12ORCID,Arellano Carlos Luis12,Banakh Ilia12,Yung-Chih Chen3,Peter Karlheinz3ORCID,Cleland Heather12,Lo Cheng Hean12ORCID,Akbarzadeh Shiva12ORCID

Affiliation:

1. Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia

2. Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia

3. Atherothrombosis and Vascular, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia

Abstract

Autologous skin grafting has been commonly used in clinics for decades to close large wounds, yet the cellular and molecular interactions between the wound bed and the graft that mediates the wound repair are not fully understood. The aim of this study was to better understand the molecular changes in the wound triggered by autologous and synthetic grafting. Defining the wound changes at the molecular level during grafting sets the basis to test other engineered skin grafts by design. In this study, a full-thickness skin graft (SKH-1 hairless) mouse model was established. An autologous full-thickness skin graft (FTSG) or an acellular fully synthetic Biodegradable Temporising Matrix (BTM) was grafted. The wound bed/grafts were analysed at histological, RNA, and protein levels during the inflammation (day 1), proliferation (day 5), and remodelling (day 21) phases of wound repair. The results showed that in this mouse model, similar to others, inflammatory marker levels, including Il-6, Cxcl-1, and Cxcl-5/6, were raised within a day post-wounding. Autologous grafting reduced the expression of these inflammatory markers. This was different from the wounds grafted with synthetic dermal grafts, in which Cxcl-1 and Cxcl-5/6 remained significantly high up to 21 days post-grafting. Autologous skin grafting reduced wound contraction compared to wounds that were left to spontaneously repair. Synthetic grafts contracted significantly more than FTSG by day 21. The observed wound contraction in synthetic grafts was most likely mediated at least partly by myofibroblasts. It is possible that high TGF-β1 levels in days 1–21 were the driving force behind myofibroblast abundance in synthetic grafts, although no evidence of TGF-β1-mediated Connective Tissue Growth Factor (CTGF) upregulation was observed.

Funder

Alfred Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

1. Wound repair and regeneration;Gurtner;Nature,2008

2. The basic science of wound healing;Broughton;Plast. Reconstr. Surg.,2006

3. Basic science of wound healing;Enoch;Surgery,2008

4. Wound repair and regeneration;Reinke;Eur. Surg. Res. Eur. Chir. Forsch. Rech. Chir. Eur.,2012

5. Cutaneous Wound Healing;Singer;N. Engl. J. Med.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3