Affiliation:
1. Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China
Abstract
The objective of this study was to identify a kind of prognostic signature based on oxidative stress- and anoikis-related genes (OARGs) for predicting the prognosis and immune landscape of NSCLC. Initially, We identified 47 differentially expressed OARGs that primarily regulate oxidative stress and epithelial cell infiltration through the PI3K-Akt pathway. Subsequently, 10 OARGs related to prognosis determined two potential clusters. A cluster was associated with a shorter survival level, lower immune infiltration, higher stemness index and tumor mutation burden. Next, The best risk score model constructed by prognostic OARGs was the Random Survival Forest model, and it included SLC2A1, LDHA and PLAU. The high-risk group was associated with cluster A and poor prognosis, with a higher tumor mutation burden, stemness index and proportion of M0-type macrophages, and a lower immune checkpoint expression level, immune function score and IPS score. The calibration curve and decision-making curve showed that the risk score combined with clinical pathological characteristics could be used to construct a nomogram for guiding the clinical treatment strategies. Finally, We found that all three hub genes were highly expressed in tumor tissues, and LDHA expression was mainly regulated by has-miR-338-3p, has-miR-330-5p and has-miR-34c-5p. Altogether, We constructed an OARG-related prognostic signature to reveal potential relationships between the signature and clinical characteristics, TME, stemness, tumor mutational burden, drug sensitivity and immune landscape in NSCLC patients.
Funder
The National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis