The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems

Author:

Sergeant ,Printz ,Guerriero ,Renaut ,Lutts ,Hausman

Abstract

In this study, the cell-wall-enriched subproteomes at three different heights of alfalfa stems were compared. Since these three heights correspond to different states in stem development, a view on the dynamics of the cell wall proteome during cell maturation is obtained. This study of cell wall protein-enriched fractions forms the basis for a description of the development process of the cell wall and the linking cell wall localized proteins with the evolution of cell wall composition and structure. The sequential extraction of cell wall proteins with CaCl2, EGTA, and LiCl-complemented buffers was combined with a gel-based proteome approach and multivariate analysis. Although the highest similarities were observed between the apical and intermediate stem regions, the proteome patterns are characteristic for each region. Proteins that bind carbohydrates and have proteolytic activity, as well as enzymes involved in glycan remobilization, accumulate in the basal stem region. Beta-amylase and ferritin likewise accumulate more in the basal stem segment. Therefore, remobilization of nutrients appears to be an important process in the oldest stem segment. The intermediate and apical regions are sites of cell wall polymer remodeling, as suggested by the high abundance of proteins involved in the remodeling of the cell wall, such as xyloglucan endoglucosylase, beta-galactosidase, or the BURP-domain containing polygalacturonase non-catalytic subunit. However, the most striking change between the different stem parts is the strong accumulation of a DUF642-conserved domain containing protein in the apical region of the stem, which suggests a particular role of this protein during the early development of stem tissues.

Funder

Fonds National de la Recherche Luxembourg

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3