Enhancing Surveillance Vision with Multi-Layer Deep Learning Representation

Author:

Son Dong-Min1ORCID,Lee Sung-Hak1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

Abstract

This paper aimed to develop a method for generating sand–dust removal and dehazed images utilizing CycleGAN, facilitating object identification on roads under adverse weather conditions such as heavy dust or haze, which severely impair visibility. Initially, the study addressed the scarcity of paired image sets for training by employing unpaired CycleGAN training. The CycleGAN training module incorporates hierarchical single-scale Retinex (SSR) images with varying sigma sizes, facilitating multiple-scaled trainings. Refining the training data into detailed hierarchical layers for virtual paired training enhances the performance of CycleGAN training. Conventional sand–dust removal or dehazing algorithms, alongside deep learning methods, encounter challenges in simultaneously addressing sand–dust removal and dehazing with a singular algorithm. Such algorithms often necessitate resetting hyperparameters to process images from both scenarios. To overcome this limitation, we proposed a unified approach for removing sand–dust and haze phenomena using a single model, leveraging images processed hierarchically with SSR. The image quality and image sharpness metrics of the proposed method were BRIQUE, PIQE, CEIQ, MCMA, LPC-SI, and S3. In sand–dust environments, the proposed method achieved the highest scores, with an average of 21.52 in BRISQUE, 0.724 in MCMA, and 0.968 in LPC-SI compared to conventional methods. For haze images, the proposed method outperformed conventional methods with an average of 3.458 in CEIQ, 0.967 in LPC-SI, and 0.243 in S3. The images generated via this proposed method demonstrated superior performance in image quality and sharpness evaluation compared to conventional algorithms. The outcomes of this study hold particular relevance for camera images utilized in automobiles, especially in the context of self-driving cars or CCTV surveillance systems.

Funder

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3