Transcriptome Analysis to Elucidate the Effects of Milk Replacer Feeding Level on Intestinal Function and Development of Early Lambs

Author:

Wang Guoxiu1ORCID,Zhang Qian23ORCID,Chen Zhanyu1,Huang Yongliang1ORCID,Wang Weimin3ORCID,Zhang Xiaoxue1,Jia Jiale1,Gao Qihao1,Xu Haoyu1,Li Chong1ORCID

Affiliation:

1. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

2. Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010000, China

3. State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China

Abstract

Although early feeding strategies influence intestinal development, the effects of milk replacer (MR) feeding level on intestinal structure and functional development and underlying regulatory mechanisms remain unclear. In this study, 14 male Hu lambs were fed MR at 2% or 4% of their average body weight and weaned at 35 days of age. The MR was produced by the Institute of Feed Research of the Chinese Academy of Agricultural Sciences, and it contains 96.91% dry matter, 23.22% protein, and 13.20% fat. Jejunal tissues were assessed by RNA-seq for differences in the gene expression of lambs at 49 days of age; regulatory pathways and mechanisms of the effects of early nutrition on intestinal function and development were analyzed, along with growth performance, feed intake, jejunal histomorphology, and digestive enzyme activities. Increasing MR- feeding levels increased dry matter intake and daily gain before weaning, as well as lactase, amylase, lipase, trypsin, and chymotrypsin activities and intestinal villus length and muscular thickness. Overall, 1179 differentially expressed genes were identified, which were enriched in nutrient metabolism, coagulation cascades, and other pathways. Further, intensive MR feeding affected insulin sensitivity to reduce excessive glucose interception by intestinal tissues to ensure adequate absorbed glucose release into the portal circulation and promoted lipid and protein degradation in intestinal tissues to meet the energy demand of intestinal cells by regulating AHSG, IGFBP1, MGAT2, ITIH, and CYP2E1 expression.

Funder

Science and Technology Project of Gansu Province—Special Project for Cooperation between the Eastern and Western Regions

Discipline Team Project of Gansu Agricultural University

Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3