Delaying the Stall of A Low-Wing Aircraft Using A Novel Powerful Vortex Generator

Author:

Goharshadi MostafaORCID,Mirzaei Masoud

Abstract

In this study, a new aerodynamic surface concept is introduced, which is a powerful vortex generator (PVG). It can delay the stall point in a low-wing aircraft. This delay leads to a significant increase in the CLmax of an aircraft. The results of this research show that the use of PVG, due to its longitudinal position, does not affect the aerodynamic center of the aircraft as well as its static stability. This is an advantage for this method compared to the method based on LEX, in which the aerodynamic center moves forward and the static stability of the aircraft reduces. As a case study, this research focused on a low-wing advanced training jet. Additionally, the aerodynamic characteristics of the aircraft were investigated in three points, including takeoff /landing condition, one maneuvering point, and one MMO condition. To evaluate the concept of PVG in more realistic situations, the wing airfoil was optimized at the same three points using the adjoint method. Then, the effect of PVG on various configurations of the aircraft, including the clean configuration and the different types of flap, was investigated. Since all the analyses were performed using computational fluid dynamics, at first, the validation of numerical methods was conducted on two test cases in low-speed and high-speed flows. The results of the case study show that the PVG greatly delays the separation and increases the value of CLmax. For example, in the case of a hinged leading-edge flap and single slotted trailing-edge flap, more than 12 degrees of delay in the stall was achieved, and the value of CLmax increased from 1.4 to 2.05 (46% increase).

Publisher

MDPI AG

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3