A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach

Author:

Alharbi Fahad RadhiORCID,Csala DenesORCID

Abstract

Time series modeling is an effective approach for studying and analyzing the future performance of the power sector based on historical data. This study proposes a forecasting framework that applies a seasonal autoregressive integrated moving average with exogenous factors (SARIMAX) model to forecast the long-term performance of the electricity sector (electricity consumption, generation, peak load, and installed capacity). In this study, the model was used to forecast the aforementioned factors in Saudi Arabia for 30 years from 2021 to 2050. The historical data that were inputted into the model were collected from Saudi Arabia at quarterly intervals across a 40-year period (1980−2020). The SARIMAX technique applies a time series approach with seasonal and exogenous influencing factors, which helps reduce the error values and improve the overall model accuracy, even in the case of close input and output dataset lengths. The experimental findings indicated that the SARIMAX model has promising performance in terms of categorization and consideration, as it has significantly improved forecasting accuracy compared with the simpler autoregressive integrated moving average-based techniques. Furthermore, the model is capable of coping with different-sized sequential datasets. Finally, the model aims to help address the issue of a lack of future planning and analyses of power performance and intermittency, and it provides a reliable forecasting technique, which is a prerequisite for modern energy systems.

Publisher

MDPI AG

Subject

General Engineering

Reference51 articles.

1. Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea

2. Short-Term Solar Irradiance Forecasting Model Based on Bidirectional Long Short-Term Memory Deep Learning;Alharbi;Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE),2021

3. Approximation of dynamical systems by continuous time recurrent neural networks

4. Short-Term Wind Speed and Temperature Forecasting Model Based on Gated Recurrent Unit Neural Networks;Alharbi;Proceedings of the 2021 3rd Global Power, Energy and Communication Conference (GPECOM),2021

5. ImageNet classification with deep convolutional neural networks

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3