Effects of Flow Oscillations in the Mainstream on Film Cooling

Author:

Baek Seung,Yavuzkurt Savas

Abstract

The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to 2144 Hz) at low and high average blowing ratios. Numerical simulations are performed using LES Smagorinsky–Lilly turbulence model for calculation of the adiabatic film cooling effectiveness and using the DES Realizable k-epsilon turbulence model for obtaining the Stanton number ratios (St/Sto). Additionally, multi-frequency inlet velocities are applied to the main and coolant flows to explore the effects of multi-frequency unsteady flows and the results are compared to those at single frequencies. The results show that at a low average blowing ratio (M = 0.5) if the oscillation frequency is increased from 0 to 180 Hz, the effectiveness decreases and the Stanton number ratio increases. However, when the frequency goes from 180 to 268 Hz, the effectiveness sharply increases and the Stanton number ratio increases slightly. If the frequency changes from 268 to 1072 Hz, the film cooling effectiveness decreases and the Stanton number ratio increases slightly. If the frequency goes from 1072 to 2144 Hz, the film cooling effectiveness climbs up and the Stanton number ratio decreases. The results show that at high average blowing ratio (M = 1.0) the trends of the film cooling effectiveness are similar to those at low blowing ratio (M = 0.5) except from 0 to 90 Hz. If the frequency goes from 0 to 90 Hz at M = 1.0, the film cooling effectiveness increases and the Stanton number ratio decreases. It can be said that it is important to include the effects of oscillating flows when designing film cooling systems for a gas turbine.

Publisher

MDPI AG

Subject

General Engineering

Reference47 articles.

1. Press information, Mitsubishi Heavy Industrieswww.mhi.com/news/story/1105261435.html.

2. Nickel Iron Alloy Comparison Chartwww.nealloys.com/pdf/nickel-iron-periodic-table.pdf

3. Performance of Gas Turbine Film Cooling with Backward Injection

4. Gas Turbine Film Cooling

5. Gas Turbine Handbook, Principles and Practices;Giampaolo,2006

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3