Feasibility Study of the CO2 Regenerator Parameters for Oxy-Fuel Combustion Power Cycle

Author:

Kindra VladimirORCID,Komarov Ivan,Osipov Sergey,Zlyvko Olga,Maksimov Igor

Abstract

The atmosphere carbon dioxide content grows subsequently due to anthropogenic factors. It may be considerably mitigated by the development of thermal power plants with near zero emissions. A promising way is the transition to the semi-closed oxy-fuel combustion power cycles with carbon dioxide and water vapor mixture as a working fluid. However, their wide implementation requires reduction of the metal consumption for the highly efficient regeneration system. This paper discloses the results of feasibility study for the regeneration system of the prospective oxy-fuel combustion power plant. The effect of operating parameters on the cycle energy efficiency, overall dimensions, and the cost of the regenerator was determined. Underheating increase in the regenerator by 1 °C leads to the net efficiency factor drop of the oxy-fuel combustion power cycle by 0.13% at average and increases fuel costs by 0.28%. Increase of pressure drop in the hot channel by 1% leads to efficiency drop by 0.14%. The optimum set of design and operating parameters of the feed heating system has been determined, which ensures the best technical and economic indicators of electrical power generation: the minimum cumulative costs are achieved when underheating in the regenerator is 20 °C and pressure drop in the hot channel is 4%, under the use of S-shaped fins channels.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3