Affiliation:
1. Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark
Abstract
The number of electric vehicles (EVs) is increasingly growing day by day and the charging infrastructure for covering this growing number of EVs should be developed. The construction of charging stations is one of the main solutions for supporting EVs while it costs huge investments for installation. Thus, this is not financially logical to invest in charging stations in remote areas with lower demands. An alternative way of constructing charging stations is to provide a peer-to-peer (P2P) energy exchange system in order to support out-of-charge EVs. In this paper, a private cloud-edge emergency energy trading framework is proposed to facilitate energy exchange among consumers and providers. Furthermore, a bidding system is suggested to encourage EVs with extra charges to exchange their energy. Moreover, a matching strategy for pairing consumers and providers is suggested in this paper that considers the benefit of both consumers and providers. In the proposed matching system, a measurement strategy is also suggested for considering the effect of the reliability and punctuality of the providers. To develop the accuracy and efficiency of the proposed framework, employing deep learning methods is also suggested in different layers of the framework. The performance of the proposed framework is evaluated on several case studies in the presence of EVs with realistic features to prove its efficiency, feasibility, and scalability.