Estimation of Heat Source Model’s Parameters for GMAW with Non-linear Global Optimization—Part I: Application of Multi-island Genetic Algorithm

Author:

Pyo Changmin,Kim Jisun,Kim Jaewoong

Abstract

Estimating the thermo-elasto-plastic deformation by arc welding through finite element analysis has been used in various industrial fields. The Goldak heat source model is one of the most important and widely used models in finite element analysis, and its parameters are estimated based on the results of previous studies and tests. Part I of this study focused on the adequate heat source model, and the study for the welding deformation with the moving heat source will be done on the latter research. This study used the parameters of Goldak’s heat source model, weld efficiency, and the location of the heat source as design variables, and defined the Heat Affected Zone (HAZ) boundary line of Bead on Plate (BOP) welding as the target. BOP welding was performed using SS400 plates, the HAZ boundary line was determined based on examining the shape of the cross-section, and the optimization condition was that temperature inside the boundary line exceeded 727 °C while the temperature outside the line did not exceed 727 °C during the welding process. During this process, a multi-island genetic algorithm (non-linear global optimization method) was used to obtain the optimal results out of 1000 candidate groups, in which the HAZ boundary was similar to the experimental results. Applying a global optimization algorithm to determine the parameters of the most important heat source model to analyze welding deformation is significant, and this may be applied in various industrial fields that use welding including shipbuilding, aviation, and machinery industries.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3