Application of Supercritical Fluid Extraction (SFE) of Tocopherols and Carotenoids (Hydrophobic Antioxidants) Compared to Non-SFE Methods

Author:

Vafaei Nazanin,Rempel Curtis B.,Scanlon Martin G.,Jones Peter J. H.,Eskin Michael N. A.

Abstract

Natural antioxidants have renewed value for human health and the food industry. Green labeling is becoming an important attribute for consumers and is impacting food processing and formulations. Clean label is another attribute that ranked third after the “free-from” claims and “a good source” of nutrient claims. Clean label attributes also are ranked higher than local, seasonal, and organic. Techniques that are able to preserve the valuable characteristics of natural antioxidants, while eliminating even trace amounts of solvent residues from their extraction and processing, are important. Supercritical fluids (SCF) are an effective green technology that can be adopted for extraction of natural antioxidants. This review is focused on the application of supercritical carbon dioxide (SCCO2) for extracting hydrophobic antioxidant compounds with an emphasis on oilseed crops and carrots. The information provided about extraction parameters helps to guide optimization of the yield of tocopherols and carotenoids. Pressure is the most effective parameter for the extraction yield of tocopherol among the other parameters, such as temperature, time, and CO2 flow rate. For carotenoid extraction, both pressure and temperature have a large impact on extraction yield. Higher yields of antioxidants, greater purity of the extracts, and larger retention of bioactivity are the main advantages of supercritical fluid extraction (SFE) in comparison to other conventional techniques. The benefits of SCF technology may open new opportunities for extracting valuable, natural and effective antioxidant compounds from food processing co-streams for use as bioactive compounds.

Funder

Canola Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3