CO2 Emissions Forecast and Emissions Peak Analysis in Shanxi Province, China: An Application of the LEAP Model

Author:

Zou Xin,Wang Renfeng,Hu Guohui,Rong Zhuang,Li Jiaxuan

Abstract

Shanxi Province, an important source of coal resources in China, has consumed a large amount of fossil fuels in the past few decades. The CO2 emissions of Shanxi Province have been increasing annually, reaching 541.8 million tons in 2018, 54.6% higher than the national mean. This will have a negative impact on China’s ability to meet its target of peaking CO2 emissions by 2030. To assist China to achieve this target and reduce CO2 emissions in Shanxi Province, this study used the Long-range Energy Alternatives Planning (LEAP) model to analyze the CO2 emissions and peaks in Shanxi Province from 2019 to 2035 under different scenarios. Furthermore, this study analyzed the time to peak CO2 emissions under different emission reduction measures through a sensitivity analysis. The results show that in the absence of other mitigation policy interventions, CO2 emissions in Shanxi Province will increase annually, reaching 1646.2 million tons by 2035. Furthermore, this study shows that if shares of industrial gross domestic product (GDP) in Shanxi, energy intensity reduction in the industrial and transport sectors compared to the base scenario, thermal power, and relative clean energy consumption reach 25%, 30%, 50%, and 50%, respectively, by 2035, then CO2 emissions of Shanxi would peak at 801.2 million tons in 2029 and GDP per capita would increase to USD 2000 by 2035. Finally, according to the results of this study, we have made some recommendations for emission reduction in Shanxi Province. The limitation of this study was that the implementation cost of the abatement policy was not considered.

Funder

the Natural Science Foundation of Hebei Province of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3