Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations

Author:

Paolone Annalisa1ORCID,Di Muzio Simone12,Palumbo Oriele1ORCID,Brutti Sergio13ORCID

Affiliation:

1. Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy

2. Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy

3. Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

Abstract

Ionic liquids are good candidates as the main component of safe electrolytes for high-energy lithium-ion batteries. The identification of a reliable algorithm to estimate the electrochemical stability of ionic liquids can greatly speed up the discovery of suitable anions able to sustain high potentials. In this work, we critically assess the linear dependence of the anodic limit from the HOMO level of 27 anions, whose performances have been experimentally investigated in the previous literature. A limited r Pearson’s value of ≈0.7 is found even with the most computationally demanding DFT functionals. A different model considering vertical transitions in a vacuum between the charged state and the neutral molecule is also exploited. In this case, the best-performing functional (M08-HX) provides a Mean Squared Error (MSE) of 1.61 V2 on the 27 anions here considered. The ions which give the largest deviations are those with a large value of the solvation energy, and therefore, an empirical model that linearly combines the anodic limit calculated by vertical transitions in a vacuum and in a medium with a weight dependent on the solvation energy is proposed for the first time. This empirical method can decrease the MSE to 1.29 V2 but still provides an r Pearson’s value of ≈0.72.

Funder

European Union Horizon

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3