Experimental and Numerical Study on Flow Resistance and Bubble Transport in a Helical Static Mixer

Author:

Yuan Fangyang,Cui Zhengwei,Lin Jianzhong

Abstract

Flow resistance and bubble transport in a helical static mixer were studied experimentally and numerically. The inline mixer increases the volume fraction of gas in liquids by breaking bubbles into smaller sizes with a micrometer size in the flow experiments. The gas–liquid flow was simulated by a combination of computational fluid dynamics and Taylor expansion methods of moments. The friction factor of the helical static mixer is much smaller than that of the Kenics static mixers. The pressure drop increases with the Reynolds number, and the increment is larger when the Reynolds number is higher. The equidistant pressure drop increases with the argument of Reynolds number, and increases when the pitch decreases from upstream to downstream. The energy expenditure increases significantly when the variable-pitch coefficient is too small. The bubble geometric mean diameter decreases and the geometric standard deviation increases when the gas–liquid fluid flows through the mixer. The variable pitch structure enhances the bubble breakup effectively. The change of the bubble size decreases with the argument of the Reynolds number. The effect of the mixer has a limitation on breaking the bubbles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3