The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient

Author:

Pilarski Krzysztof,Pilarska Agnieszka A.ORCID,Boniecki Piotr,Niedbała GniewkoORCID,Durczak Karol,Witaszek KamilORCID,Mioduszewska Natalia,Kowalik Ireneusz

Abstract

This study is an elaboration on the conference article written by the same authors, which presented the results of laboratory tests on the biogas efficiency of the following substrates: maize silage (MS), pig manure (PM), potato waste (PW), and sugar beet pulp (SB). This article presents methane yields from the same substrates, but also on a technical scale. Apart from that, it presents an original methodology of defining the Biochemical Methane Potential Correction Coefficient (BMPCC) based on the calculation of biomass conversion on an industrial scale and on a laboratory scale. The BMPCC was introduced as a tool to enable uncomplicated verification of the operation of a biogas plant to increase its efficiency and prevent undesirable losses. The estimated BMPCC values showed that the volume of methane produced in the laboratory was overestimated in comparison to the amount of methane obtained under technical conditions. There were differences observed for each substrate. They ranged from 4.7% to 17.19% for MS, from 1.14% to 23.58% for PM, from 9.5% to 13.69% for PW, and from 9.06% to 14.31% for SB. The BMPCC enables estimation of biomass under fermentation on an industrial scale, as compared with laboratory conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Feedstock change at biogas plants—Impact on production costs;Stürmer;Biomass Bioenergy,2017

2. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production;Samarappuli;J. Clean. Prod.,2018

3. Methane fermentation of the poultry manure as an alternative and environmentally friendly technology of its management;Carmona;Arch. Waste Manag. Environ. Prot.,2014

4. Effects of biogas substrate recirculation on methane yield and efficiency of a liquid-manure-based biogas plant;Müller;Energies,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3