Building a Twitter Sentiment Analysis System with Recurrent Neural Networks

Author:

Nistor Sergiu CosminORCID,Moca Mircea,Moldovan DarieORCID,Oprean Delia Beatrice,Nistor Răzvan LiviuORCID

Abstract

This paper presents a sentiment analysis solution on tweets using Recurrent Neural Networks (RNNs). The method is can classifying tweets with an 80.74% accuracy rate, considering a binary task, after experimenting with 20 different design approaches. The solution integrates an attention mechanism aiming to enhance the network, with a two-way localization system: at memory cell level and at network level. We present an in-depth literature review for Twitter sentiment analysis and the building blocks that grounded the design decisions of our solution, employed as a core classification component within a sentiment indicator of the SynergyCrowds platform.

Funder

Synergy Crowds OU

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Attention is all you need;Vaswani;arXiv,2017

2. Comparative Study of Deep Learning-Based Sentiment Classification

3. Twitter Sentiment Analysis Training Corpus (Dataset)http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment Analysis With Lipschitz Recurrent Neural Networks Based Generative Adversarial Networks;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

2. Hybrid CNN and RNN for Twitter Sentiment Analysis;Lecture Notes in Networks and Systems;2024

3. A tweet sentiment classification approach using an ensemble classifier;International Journal of Cognitive Computing in Engineering;2024

4. How do tweeters feel about scientific misinformation: an infoveillance sentiment analysis of tweets on retraction notices and retracted papers;Scientometrics;2023-12-07

5. Sentiment Analysis With Lipschitz Recurrent Neural Networks;2023 International Symposium on Networks, Computers and Communications (ISNCC);2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3