Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand

Author:

Villar Fernanda SpadaORCID,Nardelli Pedro Henrique JulianoORCID,Narayanan ArunORCID,Moioli Renan CiprianoORCID,Azzini HaderORCID,da Silva Luiz Carlos PereiraORCID

Abstract

Smart meters with automatic meter reading functionalities are becoming popular across the world. As a result, load measurements at various sampling frequencies are now available. Several methods have been proposed to infer device usage characteristics from household load measurements. However, many techniques are based on highly intensive computations that incur heavy computational costs; moreover, they often rely on private household information. In this paper, we propose a technique for the detection of appliance utilization patterns using low-computational-cost algorithms that do not require any information about households. Appliance utilization patterns are identified only from the system status behavior, represented by large system status datasets, by using dimensionality reduction and clustering algorithms. Principal component analysis, k-means, and the elbow method are used to define the clusters, and the minimum spanning tree is used to visualize the results that show the appearance of utilization patterns. Self organizing maps are used to create a system status classifier. We applied our techniques to two public datasets from two different countries, the United Kingdom (UK-DALE) and the US (REDD), with different usage patterns. The proposed clustering techniques enable effective demand-side management, while the system status classifier can detect appliance malfunctions only through system status analyses.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3