Matrix Approach for Analyzing n-Site Generalized ASIP Systems: PGF and Site Occupancy Probabilities

Author:

Yechiali Uri,Yeger YaronORCID

Abstract

The Asymmetric Simple Inclusion Process (ASIP) is an n-site tandem stochastic network with a Poisson arrival influx into the first site. Each site has an unlimited buffer with a gate in front of it. Each gate opens, independently of all other gates, following a site-dependent Exponential inter-opening time. When a site’s gate opens, all particles occupying the site move simultaneously to the next site. In this paper, a Generalized ASIP network is analyzed where the influx is to all sites, while gate openings are determined by a general renewal process. A compact matrix approach—instead of the conventional (and tedious) successive substitution method—is constructed for the derivation of the multidimensional probability-generating function (PGF) of the site occupancies. It is shown that the set of (2nn) linear equations required to obtain the PGF of an n-site network can be first cut by half into a set of 2n−1n equations, and then further reduced to a set of 2n−n+1 equations. The latter set can be additionally split into several smaller triangular subsets. It is also shown how the PGF of an n+1-site network can be derived from the corresponding PGF of an n-site system. Explicit results for networks with n=3 and n=4 sites are obtained. The matrix approach is utilized to explicitly calculate the probability that site k k=1,2,…,n is occupied. We show that, in the case where arrivals occur to the first site only, these probabilities are functions of both the site’s index and the arrival flux and not solely of the site’s index. Consequently, refined formulas for the latter probabilities and for the mean conditional site occupancies are derived. We further show that in the case where the arrival process to the first site is Poisson with rate λ, the following interesting property holds: Psite k is occupied | λ=1=Psite k+1 is occupied | λ→∞. The case where the inter-gate opening intervals are Gamma distributed is investigated and explicit formulas are obtained. Mean site occupancy and mean total load of the first k sites are calculated. Numerical results are presented.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3