Parallel Implementation of a Sensitivity Operator-Based Source Identification Algorithm for Distributed Memory Computers

Author:

Penenko AlexeyORCID,Rusin EvgenyORCID

Abstract

Large-scale inverse problems that require high-performance computing arise in various fields, including regional air quality studies. The paper focuses on parallel solutions of an emission source identification problem for a 2D advection–diffusion–reaction model where the sources are identified by heterogeneous measurement data. In the inverse modeling approach we use, a source identification problem is transformed to a quasi-linear operator equation with a sensitivity operator, which allows working in a unified way with heterogeneous measurement data and provides natural parallelization of numeric algorithms by concurrent calculation of the rows of a sensitivity operator matrix. The parallel version of the algorithm implemented with a message passing interface (MPI) has shown a 40× speedup on four Intel Xeon Gold 6248R nodes in an inverse modeling scenario for the Lake Baikal region.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference61 articles.

1. Brunet, G. (2015). Seamless Prediction of the Earth System: From Minutes to Months, World Meteorological Organization.

2. World Meteorological Organization (2018). Guide to Instruments and Methods of Observation, WMO. Volume I –Measurement of Meteorological Variables, Chapter Measurement of Atmospheric Composition.

3. Advances in air quality research—current and emerging challenges;Sokhi;Atmos. Chem. Phys.,2022

4. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models;Bocquet;Atmos. Chem. Phys. Discuss.,2014

5. Data assimilation in the geosciences: An overview of methods, issues, and perspectives;Carrassi;Wiley Interdiscip. Rev. Clim. Chang.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3