A Polynomial Fitting Problem: The Orthogonal Distances Method

Author:

Cantera-Cantera Luis AlbertoORCID,Vargas-Jarillo Cristóbal,Palomino-Reséndiz Sergio Isaí,Lozano-Hernández YairORCID,Montelongo-Vázquez Carlos Manuel

Abstract

The classical curve-fitting problem to relate two variables, x and y, deals with polynomials. Generally, this problem is solved by the least squares method (LS), where the minimization function considers the vertical errors from the data points to the fitting curve. Another curve-fitting method is total least squares (TLS), which takes into account errors in both x and y variables. A further method is the orthogonal distances method (OD), which minimizes the sum of the squares of orthogonal distances from the data points to the fitting curve. In this work, we develop the OD method for the polynomial fitting of degree n and compare the TLS and OD methods. The results show that TLS and OD methods are not equivalent in general; however, both methods get the same estimates when a polynomial of degree 1 without an independent coefficient is considered. As examples, we consider the calibration curve-fitting problem of a R-type thermocouple by polynomials of degrees 1 to 4, with and without an independent coefficient, using the LS, TLS and OD methods.

Funder

Secretaría de Investigación y Posgrado SIP IPN

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Bard, Y. (1974). Nonlinear Parameter Estimation, Academic Press.

2. Lancaster, P., and Salkauskas, K. (1986). Curve and Surface Fitting: An Introduction, Academic Press.

3. Evaluation of piecewise polynomial equations for two types of thermocouples;Chen;Sensors,2013

4. Performance evaluation of an infrared thermocouple;Chen;Sensors,2010

5. Izonin, I., Tkachenko, R., Kryvinska, N., and Tkachenko, P. (2019). International Work-Conference on Artificial Neural Networks, Springer.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3