Impacts of Water Level Fluctuations on Soil Aggregate Stability in the Three Gorges Reservoir, China

Author:

Nsabimana GratienORCID,Bao YuhaiORCID,He Xiubin,Nambajimana Jean de DieuORCID,Wang Mingfeng,Yang Ling,Li Jinlin,Zhang Shujuan,Khurram DilORCID

Abstract

Aggregate is the basic unit of soil structure, which is crucial to the sustainability of soil system functions such as structural stability and Fertility Maintenance. Three Gorges Dam (TGD) has extensively led to a dramatic hydrological regime alteration, which may consequently affect various soil physical properties. The aim of this study was to investigate the long-run temporal variation of soil aggregate stability as induced by water-level fluctuations in the riparian zone of the Three Gorges Reservoir (TGR). Sampling plots were established along different elevations considering the interval of 5 m, starting from 150 m to 175 m. A Laser Diffraction based analysis that allows the measurement of soil aggregate stability after the removal of soil organic matter helped to particularly study the effect of external factors on soil aggregate stability of the study area. In addition, wet-sieving method considering the effect of chemical binding agents was used to quantify aggregate stability. The present results indicated a significant increase of Mean Volume Diameter, MVD (p < 0.05) within the study period. Continuous drying-wetting cycles mended soil aggregate stability with a 14.25% increase of the MVD from 2012 to 2016. In the Water-Level Fluctuation Zone (WLFZ), the lower land has predominantly contributed to the increase of soil aggregate stability compared to upper land, with an increase of 62.19% and 37.81% for MVD, 60.88% and 39.12% for D10, 95.34% and 4.66% for D90 at lower and upper elevations, respectively. Sediment deposition below 165 m has precluded a direct effect of water stress on soil aggregates, which certainly declined soil disaggregation. The removal of SOM while analyzing aggregate stability by LD may explain the contradiction between the resulted MVD, and the MWD and GMD. The increase of MWD and GMD was mainly attributed to the increase of SOM with r2 = 0.89 (p < 0.01) and r2 = 0.90 (p < 0.01), while the increase of MVD was highly predicted by the decrease of SOM with r2 = 0.88 (p < 0.01). Since this study presents a remarkable change of soil in the riparian area due to dry-wet cycles, our results may help to deeply understand the soil ecology and environmental changes in the WLFZ.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3