Analysis and Validation of Ultrasonic Probes in Liquid Level Monitoring Systems

Author:

Gao Wanjia,Liu Wenyi,Li Fei,Hu YanjunORCID

Abstract

Selecting and designing the optimum ultrasonic probe is vital for ultrasonic measurements and experiments. The amplitude of the emitted ultrasonic wave excitation signal as well as the diameter and the natural frequency of the probe seriously affect the validity of the probe results. In this paper, we analyze the significance of the key parameters of the ultrasonic probe theoretically. Further, an external fixed-point liquid level monitoring system was assembled according to the principle of ultrasonic reflection and transmission. On this experimental platform, we study the key parameters of the ultrasonic probe that affect the system evaluation through a simulation and experiment, and select the optimal sensor parameters for this experiment. The evaluations show that under the experimental conditions where the tested container is made of aluminum alloy and its wall thickness is 3 mm, the best results are obtained when the diameter of the ultrasonic sensor is 15 mm, the amplitude of the emitted excitation signal is ±15 V, and the frequency is 1 MHz. The results’ average deviation is less than ±0.22 V. The evaluations are consistent with the simulation results. This research can effectively monitor the liquid in the closed, ultra-thin-walled container, and can realize non-contact measurement. It provides an effective basis for the parameters selection and design of the ultrasonic probe in the ultrasonic-based experiments and tests.

Funder

National Science Foundation of Shanxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. Research and Design on an Intelligent Level Measurement System;Yumei;J. Sichuan Univ. Sci. Eng.,2009

2. Liquid level sensor using ultrasonic Lamb waves

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3