Abstract
With the rise of location-based services and the rapidly growing requirements related to their applications, indoor localization based on channel state information–multiple-input multiple-output (CSI-MIMO) has become an important research topic. However, indoor localization based on CSI-MIMO has some disadvantages, including noise and high data dimensions. To overcome the above drawbacks, we proposed a novel method of indoor localization based on CSI-MIMO, named SICD. For SICD, a novel localization fingerprint was first designed which can reflect the time–frequency and space–frequency characteristics of CSI-MIMO under a single access point (AP). To reduce the redundancy in the data of CSI-MIMO amplitude, we developed a data dimensionality reduction algorithm. Moreover, by leveraging a log-normal distribution, we calculated the conditional probability of the naive Bayes classifier, which was used to predict the moving object’s location. Compared with other state-of-the-art methods, the results of the experiment confirm that the SICD effectively improves localization accuracy.
Funder
Postgraduate Research &Practice Innovation Program of Jiangsu Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献