A Hybrid Mayfly-Aquila Optimization Algorithm Based Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks

Author:

Natesan Gobi,Konda SrinivasORCID,de Prado RocíoORCID,Wozniak MarcinORCID

Abstract

In recent times, Wireless Sensor Networks (WSNs) are becoming more and more popular and are making significant advances in wireless communication thanks to low-cost and low-power sensors. However, since WSN nodes are battery-powered, they lose all of their autonomy after a certain time. This energy restriction impacts the network’s lifetime. Clustering can increase the lifetime of a network while also lowering energy use. Clustering will bring several similar sensors to one location for data collection and delivery to the Base Station (BS). The Cluster Head (CH) uses more energy when collecting and transferring data. The life of the WSNs can be extended, and efficient identification of CH can minimize energy consumption. Creating a routing algorithm that considers the key challenges of lowering energy usage and maximizing network lifetime is still challenging. This paper presents an energy-efficient clustering routing protocol based on a hybrid Mayfly-Aquila optimization (MFA-AOA) algorithm for solving these critical issues in WSNs. The Mayfly algorithm is employed to choose an optimal CH from a collection of nodes. The Aquila optimization algorithm identifies and selects the optimum route between CH and BS. The simulation results showed that the proposed methodology achieved better energy consumption by 10.22%, 11.26%, and 14.28%, and normalized energy by 9.56%, 11.78%, and 13.76% than the existing state-of-art approaches.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3