Abstract
The development of a facile method for the synthesis of GaN:ZnO solid solution, an attractive material with a wurtzite-type structure, is vital to enhance its photocatalytic activity toward H2 evolution. Herein, GaN:ZnO solid solution nanorods with diameters of around 180 nm were fabricated by combining the electro-spun method with a sequentially calcinating process. Photocatalytic water-splitting activities of the as-obtained samples loaded with Rh2−yCryO3 co-catalyst were estimated by H2 evolution under visible-light irradiation. The as-prepared GaN:ZnO nanorods at a nitridation temperature of 850 °C showed the optimal performance. Careful characterization of the GaN:ZnO solid solution nanorods indicated that the nitridation temperature is an important parameter affecting the photocatalytic performance, which is related to the specific surface area and the absorbable visible-light wavelength range. Finally, the mechanism of the GaN:ZnO solid solution nanorods was also investigated. The proposed synthesis strategy paves a new way to realize excellent activity and recyclability of GaN:ZnO solid solution nanorod photocatalysts for hydrogen generation.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献