An Efficient RRT Algorithm for Motion Planning of Live-Line Maintenance Robots

Author:

Feng JiaboORCID,Zhang WeijunORCID

Abstract

The application of robots to replace manual work in live-line working scenes can effectively guarantee the safety of personnel. To improve the operation efficiency and reduce the difficulties in operating a live-line working robot, this paper proposes a multi-DOF robot motion planning method based on RRT and extended algorithms. The planning results of traditional RRT and extended algorithms are random, and obtaining sub-optimal results requires a lot of calculations. In this study, a sparse offline tree filling the planning space are generated offline through the growing–withering method. In the process of expanding the tree, by removing small branches, the tree can fully wiring in the planning space with a small number of nodes. Optimize wiring through a large number of offline calculations, which can improve the progressive optimality of the algorithm. Through dynamic sampling and pruning, the growth of trees in undesired areas is reduced and undesired planning results are avoided. Based on the offline tree, this article introduces the method of online motion planning. Experiments show that this method can quickly complete the robot motion planning and obtain efficient and low-uncertainty paths.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Telerobotics for aerial live power line maintenance;Aracil,2007

2. Telerobotic system for live-power line maintenance: ROBTET

3. Robotic applications for hot‐line maintenance

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3