Biological Methods in Biodiesel Production and Their Environmental Impact

Author:

Biernat KrzysztofORCID,Matuszewska Anna,Samson-Bręk IzabelaORCID,Owczuk MarlenaORCID

Abstract

This publication presents the technologies of enzymatic biodiesel production in comparison to the conventional methods using acid and base catalysts. Transesterification with conventional catalysts has some disadvantages, and for this reason, alternative methods of biodiesel production have been investigated. These solutions include the replacement of chemical catalysts with biological ones, which show substrate specificity in relation to fats. Replacing chemical with biological catalysts causes elimination of some disadvantages of chemical processes, for instance: high temperatures of reaction, problematic process of glycerol purification, higher alcohol-to-oil molar ratios, and soap formation. Moreover, it causes operational cost reduction and has a positive environmental impact. This is due to the lower temperature of the process, which in turn translates into lower cost of equipment and lower GHG emissions associated with the need to provide less heat to the process. The increase of biofuels’ demand has led to the technology of enzymatic biodiesel production being constantly being developed. This research mainly focuses on the possibility of obtaining cheaper and more effective biocatalysts, as well as increasing the durability of enzyme immobilization on different materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference76 articles.

1. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel;Hoang;Int. J. Automot. Mech. Eng.,2018

2. Possibilities of Transport Decarbonising by 2030;Hamelinck,2019

3. Trends and Projections in Europe 2018—Tracking Progress towards Europe’s Climate and Energy Targets,2018

4. Biofuels for Transport,2011

5. Commercial Biomass Syngas Fermentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3