A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation

Author:

Wang Zhuolu1,Xu Shenghua2ORCID,Liu Jiping2,Wang Yong2,Ma Xinrui1,Jiang Tao3,He Xuan1,Han Zeya1

Affiliation:

1. School of Mapping and Geographical Science, Liaoning Technical University, Fuxin 123000, China

2. Chinese Academy of Surveying and Mapping, Beijing 100830, China

3. School of Resources and Environmental Sciences, Wuhan University, Wuhan 430072, China

Abstract

Landslide susceptibility evaluation can accurately predict the spatial distribution of potential landslides, which offers great usefulness for disaster prevention, disaster reduction, and land resource management. Aiming at the problems of insufficient samples for landslide compilation, difficulty in expanding landslide samples, and insufficient expression of nonlinear relationships among evaluation factors, this paper proposes a new evaluation method of landslide susceptibility combining deep autoencoder and multi-scale residual network (DAE-MRCNN). In the first step, a deep autoencoder network was used to learn the feature expression of the original landslide data in order to acquire effective features in the data. Next, a multi-scale residual network was constructed; specifically, the model was improved into a deep residual network model by adding skip connections in the convolutional layer. In addition, the multi-scale idea was utilized to fully extract the scale characteristics of the evaluation factors. Finally, the model was used for feature training, and the results were input into the Softmax classifier to complete the prediction of landslide susceptibility. For this purpose, a machine learning method and two state-of-the-art deep learning methods, namely SVM, CPCNN-ML, and 2D-CNN, were utilized to model landslide susceptibility in Hanzhong City, Shaanxi Province. The proposed method produced the highest model performance of 0.891, followed by 0.842, 0.869, and 0.873. The experimental results show that the DAE-MRCNN method can fully express the complex nonlinear relationships among the evaluation factors, alleviate the problem of insufficient samples in convolutional neural networks (CNN) training, and significantly improve the accuracy of susceptibility prediction.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3