Scale in Scale for SAR Ship Instance Segmentation

Author:

Shao Zikang1,Zhang Xiaoling1,Wei Shunjun1,Shi Jun1,Ke Xiao1,Xu Xiaowo1ORCID,Zhan Xu1ORCID,Zhang Tianwen1,Zeng Tianjiao2

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Ship instance segmentation in synthetic aperture radar (SAR) images can provide more detailed location information and shape information, which is of great significance for port ship scheduling and traffic management. However, there is little research work on SAR ship instance segmentation, and the general accuracy is low because the characteristics of target SAR ship task, such as multi-scale, ship aspect ratio, and noise interference, are not considered. In order to solve these problems, we propose an idea of scale in scale (SIS) for SAR ship instance segmentation. Its essence is to establish multi-scale modes in a single scale. In consideration of the characteristic of the targeted SAR ship instance segmentation task, SIS is equipped with four tentative modes in this paper, i.e., an input mode, a backbone mode, an RPN mode (region proposal network), and an ROI mode (region of interest). The input mode establishes multi-scale inputs in a single scale. The backbone mode enhances the ability to extract multi-scale features. The RPN mode makes bounding boxes better accord with ship aspect ratios. The ROI mode expands the receptive field. Combined with them, a SIS network (SISNet) is reported, dedicated to high-quality SAR ship instance segmentation on the basis of the prevailing Mask R-CNN framework. For Mask R-CNN, we also redesign (1) its feature pyramid network (FPN) for better small ship detection and (2) its detection head (DH) for a more refined box regression. We conduct extensive experiments to verify the effectiveness of SISNet on the open SSDD and HRSID datasets. The experimental results reveal that SISNet surpasses the other nine competitive models. Specifically, the segmentation average precision (AP) index is superior to the suboptimal model by 4.4% on SSDD and 2.5% on HRSID.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BBox-Free SAR Ship Instance Segmentation Method Based on Gaussian Heatmap;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Deep Neural Network Explainability Enhancement via Causality-Erasing SHAP Method for SAR Target Recognition;IEEE Transactions on Geoscience and Remote Sensing;2024

3. MrisNet: Robust Ship Instance Segmentation in Challenging Marine Radar Environments;Journal of Marine Science and Engineering;2023-12-27

4. Research on Instance Segmentation of High-Resolution Remote Sensing Images;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

5. Scale-aware dimension-wise attention network for small ship instance segmentation in synthetic aperture radar images;Journal of Applied Remote Sensing;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3