Abstract
The synthesis and physical properties of the series of the ferrocenyl-containing sterically hindered phosphonium salts based on di(tert-butyl)ferrocenylphosphine is reported. Analysis of voltamogramms of the obtained compounds revealed some correlations between their structures and electrochemical properties. The elongation of the alkyl chain at the P atom as well as replacement of the Br− anion by [BF4]− shifts the ferrocene/ferrocenium transition of the resulting salts into the positive region. DFT results shows that in the former case, the Br− anion destabilizes the corresponding ion pair, making its oxidation easier due to increased highest occupied molecular orbital (HOMO) energy. Increased HOMO energy for ion pairs with the Br− ion compared to BF4− are caused by contribution of bromide atomic orbitals to the HOMO. The observed correlations can be used for fine-tuning the properties of the salts making them attractive for applications in multicomponent batteries and capacitors.
Funder
Russian Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献