Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy

Author:

Zhang Pengjie1,Du Bin1,Xu Jiwei1ORCID,Wang Jiang1,Liu Zhiwei1,Liu Bing1,Meng Fanhua1,Tong Zhaoyang1

Affiliation:

1. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

Abstract

Sensitively detecting hazardous and suspected bioaerosols is crucial for safeguarding public health. The potential impact of pollen on identifying bacterial species through fluorescence spectra should not be overlooked. Before the analysis, the spectrum underwent preprocessing steps, including normalization, multivariate scattering correction, and Savitzky–Golay smoothing. Additionally, the spectrum was transformed using difference, standard normal variable, and fast Fourier transform techniques. A random forest algorithm was employed for the classification and identification of 31 different types of samples. The fast Fourier transform improved the classification accuracy of the sample excitation–emission matrix fluorescence spectrum data by 9.2%, resulting in an accuracy of 89.24%. The harmful substances, including Staphylococcus aureus, ricin, beta-bungarotoxin, and Staphylococcal enterotoxin B, were clearly distinguished. The spectral data transformation and classification algorithm effectively eliminated the interference of pollen on other components. Furthermore, a classification and recognition model based on spectral feature transformation was established, demonstrating excellent application potential in detecting hazardous substances and protecting public health. This study provided a solid foundation for the application of rapid detection methods for harmful bioaerosols.

Funder

State Key Laboratory of NBC Protection for Civilian

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3