Redox-Regulated Magnetic Conversions between Ferro- and Antiferromagnetism in Organic Nitroxide Diradicals

Author:

Zhang Fengying12,Zhang Zijun3,Zhao Yali12,Du Chao12,Li Yong12,Gao Jiaqi12,Ren Xiaobo12,Ma Teng12,Li Boqiong12,Bu Yuxiang4

Affiliation:

1. Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China

2. Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030619, China

3. Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China

4. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Abstract

Redox-induced magnetic transformation in organic diradicals is an appealing phenomenon. In this study, we theoretically designed twelve couples of diradicals in which two nitroxide (NO) radical groups are connected to the redox-active couplers including p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, hexacene-6,15-dione, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene. As evidenced at both the B3LYP and M06-2X levels of theory, the calculations reveal that the magnetic reversal can take place from ferromagnetism to antiferromagnetism, or vice versa, by means of redox method in these designed organic magnetic molecules. It was observed that p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, and hexacene-6,15-dione-bridged NO diradicals produce antiferromagnetism while their dihydrogenated counterparts exhibit ferromagnetism. Similarly, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene-bridged NO diradicals present ferromagnetism while their dihydrogenated counterparts show antiferromagnetism. The differences in the magnetic behaviors and magnetic magnitudes of each of the twelve couples of diradicals could be attributed to their distinctly different spin-interacting pathways. It was found that the nature of the coupler and the length of the coupling path are important factors in controlling the magnitude of the magnetic exchange coupling constant J. Specifically, smaller HOMO-LUMO (HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital) gaps of the couplers and shorter coupler lengths, as well as shorter linking bond lengths, can attain stronger magnetic interactions. In addition, a diradical with an extensively π-conjugated structure is beneficial to spin transport and can effectively promote magnetic coupling, yielding a large |J| accordingly. That is, a larger spin polarization can give rise to a stronger magnetic interaction. The sign of J for these studied diradicals can be predicted from the spin alternation rule, the shape of the singly occupied molecular orbitals (SOMOs), and the SOMO-SOMO energy gaps of the triplet state. This study paves the way for the rational design of magnetic molecular switches.

Funder

National Youth Natural Fund

Jinzhong University Research Funds for Doctor

Shanxi Province Science and Technology Innovation Youth Talent Team

Scientific and Technology Key Research and Development Project of Jinzhong City

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3