Investigation on Long-Term Stability of Vermiculite Seals for Reversible Solid Oxide Cell

Author:

Li Ruizhu1ORCID,Lu Yue1,Yu Yutian1,Ren Xianzhi2,Ding Feng2,Guan Chengzhi1ORCID,Wang Jianqiang1

Affiliation:

1. Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. Zhejiang CPS Cathay Packing & Sealing Co., Ltd., Hangzhou 311255, China

Abstract

A reversible solid oxide cell (RSOC) integrating solid oxide fuel (SOFC) and a solid oxide electrolysis cell (SOEC) usually utilizes compressive seals. In this work, the vermiculite seals of various thickness and compressive load during thermal cycles and long-term operation were investigated. The leakage rates of seals were gradually increased with increasing thickness and input gas pressure. The thinner seals had good sealing performance. The compressive load was carried out at thinner seals, the possible holes were squeezed, and finally the leakage rates were lower. With a fixed input gas pressure of 1 psi, 2 psi, and 3 psi, the leakage rates of 0.50 mm vermiculite remained at around 0.009 sccm/cm, 0.017 sccm/cm and 0.028 sccm/cm during twenty thermal cycles, while the leakage rates remained at around 0.011 sccm/cm for about 240 h. Simultaneously, elemental diffusions between seals and components were limited, implying good compatibility. Furthermore, the open circuit voltage (OCV) remained at around 1.04 V during 17 thermal cycles, which is close to Nernst potentials. The stack performance confirmed that the vermiculite seals can meet the structural support and sealing requirements. Therefore, the vermiculite shows good promise for application in stacks during thermal cycles and long-term operation.

Funder

China Postdoctoral Science Foundation

Hubei Key Laboratory of Novel Reactor and Green Chemical Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3