Synthesis and Biological Evaluation of 5′-O-Fatty Acyl Ester Derivatives of 3′-Fluoro-2′,3′-dideoxythymidine as Potential Anti-HIV Microbicides

Author:

Agarwal Hitesh K.,Chhikara Bhupender S.,Ye Guofeng,Bhavaraju SitaramORCID,Dixit Ajay,Kumar AnilORCID,Doncel Gustavo F.,Parang KeykavousORCID

Abstract

A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.

Funder

CONRAD

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3