Catalytic Asymmetric α-Functionalization of α-Branched Aldehydes

Author:

Vera Silvia1,Landa Aitor1,Mielgo Antonia1,Ganboa Iñaki1,Oiarbide Mikel1ORCID,Soloshonok Vadim12ORCID

Affiliation:

1. Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain

2. IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

Abstract

Aldehydes constitute a main class of organic compounds widely applied in synthesis. As such, catalyst-controlled enantioselective α-functionalization of aldehydes has attracted great interest over the years. In this context, α-branched aldehydes are especially challenging substrates because of reactivity and selectivity issues. Firstly, the transient trisubstituted enamines and enolates resulting upon treatment with an aminocatalyst or a base, respectively, would exhibit attenuated reactivity; secondly, mixtures of E- and Z-configured enamines/enolates may be formed; and third, effective face-discrimination on such trisubstituted sp2 carbon intermediates by the incoming electrophilic reagent is not trivial. Despite these issues, in the last 15 years, several catalytic approaches for the α-functionalization of prostereogenic α-branched aldehydes that proceed in useful yields and diastereo- and enantioselectivity have been uncovered. Developments include both organocatalytic and metal-catalyzed approaches as well as dual catalysis strategies for forging new carbon–carbon and carbon–heteroatom (C-O, N, S, F, Cl, Br, …) bond formation at Cα of the starting aldehyde. In this review, some key early contributions to the field are presented, but focus is on the most recent methods, mainly covering the literature from year 2014 onward.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3