Affiliation:
1. Xingzhi College, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
2. Department of Chemical, Materials and Production Engineering, University Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
Abstract
In this study, facile construction engineering of Pr6O11@C with efficient photocatalytic activity was established. Taking advantage of the flocculation of Pr3+ in the base medium, acid red 14 (AR14) was flocculated together with Pr(OH)3 precipitate, in which Pr(OH)3 and AR14 mixed highly uniformly. Calcinated at high temperature in N2, a novel Pr6O11@C was successfully synthesized. The resulting materials were characterized by XRD, SEM, FT-IR, Raman, and XPS techniques. The results show that the cubic Pr6O11@C with Fm3m space group, similar to that of Pr6O11, was obtained. From the results of the photodegradation of AR14, it is found that the photocatalytic efficiency of Pr6O11@C is higher than that of pure Pr6O11 due to the formation of abundant carbon bonds and oxygen vacancies. Compared with pure Pr6O11 and other carbon-based composites, the acid resistance of Pr6O11@C is greatly improved due to the highly uniform dispersion of Pr6O11 and C, which lays a solid foundation for the practical application of Pr6O11@C. Moreover, the role of NH3·H2O and NaOH used as precipitants for the photocatalytic efficiency of Pr6O11 was investigated in detail.
Funder
The Natural Science Foundation of China
Key and general Projects of Jinhua Science and Technology Bureau