Antioxidant, Anti-Bacterial, and Congo Red Dye Degradation Activity of AgxO-Decorated Mustard Oil-Derived rGO Nanocomposites

Author:

Lekshmi G. S.,Ramasamy Tamilselvi,Bazaka Olha,Levchenko IgorORCID,Bazaka Kateryna,Govindan Raji,Mandhakini Mohandas

Abstract

Scaling up the production of functional reduced graphene oxide (rGO) and its composites requires the use of low-cost, simple, and sustainable synthesis methods, and renewable feedstocks. In this study, silver oxide-decorated rGO (AgxO−rGO) composites were prepared by open-air combustion of mustard oil, essential oil-containing cooking oil commercially produced from the seeds of Brassica juncea. Silver oxide (AgxO) nanoparticles (NPs) were synthesized using Coleus aromaticus leaf extract as a reducing agent. Formation of mustard seed rGO and AgxO NPs was confirmed by UV-visible characteristic peaks at 258 nm and 444 nm, respectively. rGO had a flake-like morphology and a crystalline structure, with Raman spectra showing clear D and G bands with an ID/IG ratio of 0.992, confirming the fewer defects in the as-prepared mustard oil-derived rGO (M−rGO). The rGO-AgxO composite showed a degradation efficiency of 81.9% with a rate constant k−1 of 0.9506 min−1 for the sodium salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (known as the azo dye Congo Red) in an aqueous solution under visible light irradiation. The composite also showed some antimicrobial activity against Klebsilla pneomoniae, Escherichiacoli, and Staphylococcusaureus bacterial cells, with inhibition zones of ~15, 18, and 14 mm, respectively, for a concentration of 300 µg/mL. At 600 µg/mL concentration, the composite also showed moderate scavenging activity for 2,2-diphenyl-1-picrylhydrazyl of ~30.6%, with significantly lower activities measured for AgxO (at ~18.1%) and rGO (~8%) when compared to control.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3