The New Functional Hybrid Chaperone Protein ADGroEL–SacSm

Author:

Mikhaylina Alisa1,Lekontseva Natalia1,Marchenkov Victor1ORCID,Kolesnikova Viktoria1,Khairetdinova Albina1,Nikonov Oleg1,Balobanov Vitalii1

Affiliation:

1. Institute of Protein Research, Russian Academy of Sciences, Institutskaya Str. 4, 142290 Pushchino, Russia

Abstract

The creation of new proteins by combining natural domains is a commonly used technique in protein engineering. In this work, we have tested the possibilities and limitations of using circular homo-oligomeric Sm-like proteins as a basis for attaching other domains. Attachment to such a stable base should bring target domains together and keep them in the correct mutual orientation. We chose a circular homoheptameric Sm-like protein from Sulfolobus acidocaldarius as a stable backbone and the apical domain of the GroEL chaperone protein as the domain of study. This domain by itself, separated from the rest of the GroEL molecule, does not form an oligomeric ring. In our design, the hyperstable SacSm held the seven ADGroELs together and forced them to oligomerize. The designed hybrid protein was obtained and studied with various physical and chemical methods. Stepwise assembly and self-organization of this protein have been shown. First, the SacSm base was assembled, and then ADGroEL was folded on it. Functional testing showed that the obtained fusion protein was able to bind the same non-native proteins as the full-length GroEL chaperone. It also reduced the aggregation of a number of proteins when they were heated, which confirms its chaperone activity. Thus, the engineering path we chose made it possible to create an efficient thermostable chaperone. The result obtained shows the productivity of the way we chose for the creation and stabilization of oligomeric proteins.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference27 articles.

1. The multiplicity of domains in proteins;Doolittle;Annu. Rev. Biochem.,1995

2. Structure, function and evolution of multidomain proteins;Vogel;Curr. Opin. Struct. Biol.,2004

3. Domain Rearrangements in Protein Evolution;Bjorklund;J. Mol. Biol.,2005

4. The folding and evolution of multidomain proteins;Han;Nat. Rev. Mol. Cell Biol.,2007

5. Designing supramolecular protein assemblies;Yeates;Curr. Opin. Struct. Biol.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3