A Rational Combination of Cyclocarya paliurus Triterpene Acid Complex (TAC) and Se-Methylselenocysteine (MSC) Improves Glucose and Lipid Metabolism via the PI3K/Akt/GSK3β Pathway

Author:

Bai Xichen1,Zhou Hong1ORCID,Luo Dan2,Chen Dan2,Fan Jianyuan3,Shao Xiaoting3,Zhou Jun4ORCID,Liu Wei5

Affiliation:

1. College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2. Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China

3. Enshi Savant Ecological Agriculture Development Co., Ltd., Enshi 445099, China

4. Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

5. National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China

Abstract

Cyclocarya paliurus (CP) contains triterpene acids that can improve glucose and lipid metabolism disorders. However, controlling the composition and content of these active ingredients in CP extracts is challenging. The main active components in CP triterpene acids, including ursolic acid (UA), oleanolic acid (OA), and betulinic acid (BA), exhibit antihyperglycemic and antihypertensive effects. The response surface methodology was utilized to design and optimize the ratio of UA, OA, and BA based on the inhibition rate of pancrelipase and α-amylase. The proportional mixture of UA, OA, and BA resulted in the formation of a complex known as Cyclocarya paliurus triterpenoid acid (TAC). Se-methylselenocysteine (MSC), a compound with various physiological functions such as antioxidant properties and tumor inhibition, has been used in combination with TAC to form the TAC/MSC complex. Our data demonstrate that TAC/MSC improved palmitic acid (PA)-induced insulin resistance in HepG2 cells through activating the phosphoinositide 3-kinase (PI3K) /protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) pathway. Moreover, TAC/MSC effectively improved hyperglycemia, glucose intolerance, insulin resistance, and lipid metabolism disorder in mice with type 2 diabetes mellitus (T2DM), attenuated hepatic steatosis, and reduced oxidative stress to alleviate T2DM characteristics.

Funder

National Natural Science Foundation of China

National Key R&D Program of Nanotechnology of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3