Highly Efficient Synthesis of Chlorogenic Acid Oleyl Alcohol Ester under Non-Catalytic and Solvent-Free Conditions

Author:

Sun Cong12ORCID,Liu Hui2ORCID,Chen Yanran2ORCID,Wei Xianzhi2ORCID,Liang Shaohua12ORCID

Affiliation:

1. Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China

2. College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China

Abstract

As a natural polyphenolic compound, chlorogenic acid (CGA) has attracted increasing attention for its various biological activities, such as antioxidant, liver protection, intestinal barrier protection, and effective treatment of obesity and type II diabetes. However, the poor solubility of CGA in hydrophobic media limits its application in the food, drug and cosmetic industries. In order to obtain new hydrophobic derivatives, a highly efficient synthesis approach of CGA oleyl alcohol ester (CGOA) under non-catalytic and solvent-free conditions was developed in this study. The influences of reaction temperature, reaction time, substrate molar ratio, and stirring rate on the CGA conversion were investigated. The results showed that the optimal conditions were as follows: reaction temperature 200 °C, reaction time 3 h, molar ratio of CGA to oleyl alcohol 1:20, and stirring rate 200 rpm. Under these conditions, the CGA conversion could reach 93.59%. Then, the obtained crude product was purified by solvent extraction and column chromatography, and the purify of CGOA was improved to 98.72%. Finally, the structure of CGOA was identified by FT-IR, HPLC-MS and NMR. This study provides a simple and efficient strategy for the preparation of CGOA with the avoidance of catalysts and solvents.

Funder

Provincial Research Platform of Grain, Oil and Food College of Henan University of Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3