The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton

Author:

Ayesh Maram,Horrocks Arthur RichardORCID,Kandola Baljinder K.ORCID

Abstract

Application of a combined atmospheric plasma/UV laser to cotton fabrics impregnated with selected non-durable flame retardants (FRs) has shown evidence of covalent grafting of the latter species on to cotton fibre surfaces. As a result, an increase in their durability to water-soaking for 30 min at 40 °C has been recorded. Based on previous research plasma gases comprising Ar80%/CO220% or N280%/O220% were used to pre-expose cotton fabric prior to or after FR impregnation to promote the formation of radical species and increased –COOH groups on surface cellulosic chains, which would encourage formation of FR-cellulose bonds. Analysis by scanning electron microscopy (SEM/EDX), X-ray photoelectron spectroscopy (XPS) and thermal analysis (TGA) suggested that organophosphorus- and nitrogen- containing flame retarding species in the presence of the silicon-containing molecules such as 3-aminopropyltriethoxy silane (APTS) resulted in formation of FR-S-O-cellulose links, which gave rise to post-water-soaking FR retentions > 10%. Similarly, the organophosphorus FR, diethyl N, N bis (2-hydroxyethyl) aminomethylphosphonate (DBAP), after plasma/UV exposure produced similar percentage retention values possibly via (PO).O.cellulose bond formation, While none of the plasmas/UV-treated, FR-impregnated fabrics showed self-extinction behaviour, although burning rates reduced and significant char formation was evident, it has been shown that FR durability may be increased using plasma/UV treatments.

Funder

The Cotton Industry War Memorial Trust

The Jack Brown Research Studentship in partnership with MTIX Ltd., Huddersfield, UK

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3