Abstract
Carbamazepine (CBZ), as a typical pharmaceutical and personal care product (PPCP), cannot be efficiently removed by the conventional drinking water and wastewater treatment process. In this work, the CoS2/Fe2+/PMS process was applied for efficient elimination of CBZ. The CBZ removal efficiency of CoS2/Fe2+/PMS was 2.5 times and 23 times higher than that of CoS2/PMS and Fe2+/PMS, respectively. The intensity of DMPO-HO• and DMPO-SO4•− followed the order of Fe2+/PMS < CoS2/PMS < CoS2/Fe2+/PMS, also suggesting the CoS2/Fe2+/PMS process has the highest oxidation activity. The effects of reaction conditions (e.g., CoS2 dosage, Fe2+ concentration, PMS concentration, initial CBZ concentration, pH, temperature) and water quality parameters (e.g., SO42−, NO3−, H2PO4−, Cl−, NH4+, humic acid) on the degradation of CBZ were also studied. Response surface methodology analysis was carried out to obtain the best conditions for the removal of CBZ, which are: Fe2+ = 70 µmol/L, PMS = 240 µmol/L, CoS2 = 0.59 g/L. The sustainability test demonstrated that the repeated use of CoS2 for 8 successive cycles resulted in little function decrease (<10%). These findings suggest that CoS2/Fe2+/PMS may be a promising method for advanced treatment of tailwater from sewage treatment plant.
Funder
General Project of Zhejiang Medicine and Health Science and Technology Plan
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献