The Cytoprotective Effect of C60 Derivatives in the Self-Microemulsifying Drug Delivery System against Triptolide-Induced Cytotoxicity In Vitro

Author:

Xu Beihua1,Wang Zhenyu1,Zhang Huimin1,Xu Xiao1,Tang Mengjie1,Wang Gang1,Ding Zhongpeng1,Yu Ruihao1,Ding Meihong1,Zhang Ting1,Shi Senlin1ORCID

Affiliation:

1. College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China

Abstract

Objective: The aim of this study was to optimize the formulation of a C60-modified self-microemulsifying drug delivery system loaded with triptolide (C60-SMEDDS/TP) and evaluate the cytoprotective effect of the C60-SMEDDS/TP on normal human cells. Results: The C60-SMEDDS/TP exhibited rapid emulsification, an optimal particle size distribution of 50 ± 0.19 nm (PDI 0.211 ± 0.049), and a near-neutral zeta potential of −1.60 mV. The release kinetics of TP from the C60-SMEDDS/TP exhibited a sustained release profile and followed pseudo-first-order release kinetics. Cellular proliferation and apoptosis analysis indicated that the C60-SMEDDS/TP (with a mass ratio of TP: DSPE-PEG-C60 = 1:10) exhibited lower toxicity towards L02 and GES-1 cells. This was demonstrated by a higher IC50 (40.88 nM on L02 cells and 17.22 nM on GES-1 cells) compared to free TP (21.3 nM and 11.1 nM), and a lower apoptosis rate (20.8% on L02 cells and 26.3% on GES-1 cells, respectively) compared to free TP (50.5% and 47.0%) at a concentration of 50 nM. In comparison to the free TP group, L02 cells and GES-1 cells exposed to the C60-SMEDDS/TP exhibited a significant decrease in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM). On the other hand, the C60-SMEDDS/TP demonstrated a similar inhibitory effect on BEL-7402 cells (IC50 = 28.9 nM) and HepG2 cells (IC50 = 107.6 nM), comparable to that of the free TP (27.2 nM and 90.4 nM). The C60-SMEDDS/TP group also exhibited a similar intracellular level of ROS and mitochondrial membrane potential compared to the SMEDDS/TP and free TP groups. Method: Fullerenol-Grafted Distearoyl Phosphatidylethanolamine-Polyethylene Glycol (DSPE-PEG-C60) was synthesized and applied in the self-microemulsifying drug delivery system. The C60-SMEDDS/TP was formulated using Cremophor EL, medium-chain triglycerides (MCT), PEG-400, and DSPE-PEG-C60, and loaded with triptolide (TP). The toxicity and bioactivity of the C60-SMEDDS/TP were assessed using normal human liver cell lines (L02 cells), normal human gastric mucosal epithelial cell lines (GES-1 cells), and liver cancer cell lines (BEL-7402 cells and HepG2 cells). The production of reactive oxygen species (ROS) after the C60-SMEDDS/TP treatment was assessed using 2′,7′-dichlorofluorescein diacetate (DCFDA) staining. The alterations in mitochondrial membrane potential (ΔψM) were assessed by measuring JC-1 fluorescence. Conclusions: The cytoprotection provided by the C60-SMEDDS/TP favored normal cells (L02 and GES-1) over tumor cells (BEL-7402 and HepG2 cells) in vitro. This suggests a promising approach for the safe and effective treatment of TP.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3