Biophysical and Biological Tools to Better Characterize the Stability, Safety and Efficacy of a Cosmeceutical for Acne-Prone Skin

Author:

Sommatis Sabrina,Capillo Maria ChiaraORCID,Maccario Cristina,Liga Elsa,Grimaldi Giulia,Rauso RaffaeleORCID,Bencini Pier Luca,Guida Stefania,Zerbinati Nicola,Mocchi Roberto

Abstract

(1) Background: Acne is a widespread skin disease, especially among adolescents. Following the COVID-19 pandemic and the use of masks, the problem has been affecting a greater number of people, and the attention of the skin care beauty routine cosmetics has been focused on the “Maskne”, caused by the sebum excretion rate (SER) that stimulates microbial proliferation. (2) Methods: the present study was focused on the rheological characterization and quality assurance of the preservative system of an anti-acne serum. The biological effectiveness (cytotoxicity—skin and eye irritation—antimicrobial, biofilm eradication and anti-inflammatory activity) was evaluated in a monolayer cell line of keratinocytes (HaCaT) and on 3D models (reconstructed human epidermis, RHE and human reconstructed corneal epithelium, HCE). The Cutibacterium acnes, as the most relevant acne-inducing bacterium, is chosen as a pro-inflammatory stimulus and to evaluate the antimicrobial activity of the serum. (3) Results and Conclusions: Rheology allows to simulate serum behavior at rest, extrusion and application, so the serum could be defined as having a solid-like behavior and being pseudoplastic. The preservative system is in compliance with the criteria of the reference standard. Biological effectiveness evaluation shows non-cytotoxic and irritant behavior with a good antimicrobial and anti-inflammatory activity of the formulation, supporting the effectiveness of the serum for acne-prone skin treatment.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3