Structural and Biological Characterizations of Novel High-Affinity Fluorescent Probes with Overlapped and Distinctive Binding Regions on CXCR4

Author:

Zhu SiyuORCID,Meng Qian,Schooley Robert T.,An Jing,Xu Yan,Huang Ziwei

Abstract

CXC-type chemokine receptor 4 (CXCR4) is well known as a co-receptor for cellular entry and infection of human immunodeficiency virus type 1 (HIV-1). As an important member of the G protein-coupled receptor (GPCR) family, CXCR4 also mediates a variety of cellular processes and functions, such as cell chemotaxis, proliferation, and calcium signal transductions. Identification and characterization of molecular ligands or probes of CXCR4 have been an intensive area of investigations as such ligands or probes are of significant clinical values for the studies and treatments of HIV-1 infection and other human diseases mediated by the receptor. The crystal structures of CXCR4 in complex with different ligands have revealed two distinctive binding regions or subpockets. Thus, understanding the interactions of diverse ligands with these distinctive CXCR4 binding regions has become vital for elucidating the relationship between binding modes and biological mechanisms of ligand actions. Peptidic CVX15 is the only ligand that has been validated to bind one of these distinctive binding regions (or so called the major subpocket) of CXCR4. Therefore, in this study, we developed an efficient probe system including two high-affinity peptidic fluorescent probes, designated as FITC-CVX15 and FITC-DV1, with the aim of targeting distinctive CXCR4 subpockets. We conducted rational design and chemical characterization of the two CXCR4-specific probes and examined their application in biological experiments including competitive binding assays, flow cytometry analysis, and confocal imaging. Especially these two probes were applied in parallel CXCR4 competitive binding assays to detect and analyze potential binding modes of diverse CXCR4 ligands, together with molecular docking and simulations. Our results have indicated that these peptidic fluorescent probe systems provide novel ligand detecting tools, as well as present a new approach for analyzing distinctive binding modes of diverse CXCR4 ligands.

Funder

Tsinghua University

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3