Multi-Dimensional Elimination of β-Lactams in the Rural Wetland: Molecule Design and Screening for More Antibacterial and Degradable Substitutes

Author:

Sun Shuhai,Li Zhuang,Ren Zhixing,Li YuORCID

Abstract

Restricted economic conditions and limited sewage treatment facilities in rural areas lead to the discharge of small-scale breeding wastewater containing higher values of residual beta-lactam antibiotics (β-lactams), which seriously threatens the aquatic environment. In this paper, molecular docking and a comprehensive method were performed to quantify and fit the source modification for the combined biodegradation of β-lactams. Using penicillin (PNC) as the target molecule, combined with contour maps for substitute modification, a three-dimensional quantitative structure–activity relationship (3D-QSAR) model was constructed for the high-performance combined biodegradation of β-lactams. The selected candidate with better environmental friendliness, functionality, and high performance was screened. By using the homology modeling algorithms, the mutant penicillin-binding proteins (PBPs) of Escherichia coli were constructed to have antibacterial resistance against β-lactams. The molecular docking was applied to obtain the target substitute by analyzing the degree of antibacterial resistance of β-lactam substitute. The combined biodegradation of β-lactams and substitute in the constructed wetland (CW) by different wetland plant root secretions was studied using molecular dynamics simulations. The result showed a 49.28% higher biodegradation of the substitutes than PNC when the combined wetland plant species of Eichhornia crassipes, Phragmites australis, and Canna indica L. were employed.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3