Expression and Characterisation of the First Snail-Derived UDP-Gal: Glycoprotein-N-acetylgalactosamine β-1,3-Galactosyltransferase (T-Synthase) from Biomphalaria glabrata

Author:

Zemkollari MarilicaORCID,Blaukopf Markus,Grabherr ReingardORCID,Staudacher ErikaORCID

Abstract

UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase (T-synthase, EC 2.4.1.122) catalyses the transfer of the monosaccharide galactose from UDP-Gal to GalNAc-Ser/Thr, synthesizing the core 1 mucin type O-glycan. Such glycans play important biological roles in a number of recognition processes. The crucial role of these glycans is acknowledged for mammals, but a lot remains unknown regarding invertebrate and especially mollusc O-glycosylation. Although core O-glycans have been found in snails, no core 1 β-1,3-galactosyltransferase has been described so far. Here, the sequence of the enzyme was identified by a BlastP search of the NCBI Biomphalaria glabrata database using the human T-synthase sequence (NP_064541.1) as a template. The obtained gene codes for a 388 amino acids long transmembrane protein with two putative N-glycosylation sites. The coding sequence was synthesised and expressed in Sf9 cells. The expression product of the putative enzyme displayed core 1 β-1,3-galactosyltransferase activity using pNP-α-GalNAc as the substrate. The enzyme showed some sequence homology (49.40% with Homo sapiens, 53.69% with Drosophila melanogaster and 49.14% with Caenorhabditis elegans) and similar biochemical parameters with previously characterized T-synthases from other phyla. In this study we present the identification, expression and characterisation of the UDP-Gal: glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase from the fresh-water snail Biomphalaria glabrata, which is the first cloned T-synthase from mollusc origin.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3