NH2-MIL-53(Al) Polymer Monolithic Column for In-Tube Solid-Phase Microextraction Combined with UHPLC-MS/MS for Detection of Trace Sulfonamides in Food Samples

Author:

Zhang Qian-ChunORCID,Xia Guang-Ping,Liang Jun-Yi,Zhang Xiao-Lan,Jiang Li,Zheng Yu-Guo,Wang Xing-Yi

Abstract

In this study, a novel monolithic capillary column based on a NH2-MIL-53(Al) metal–organic framework (MOF) incorporated in poly (3-acrylamidophenylboronic acid/methacrylic acid-co-ethylene glycol dimethacrylate) (poly (AAPBA/MAA-co-EGDMA)) was prepared using an in situ polymerization method. The characteristics of the MOF-polymer monolithic column were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. The prepared MOF-polymer monolithic column showed good permeability, high extraction efficiency, chemical stability, and good reproducibility. The MOF-polymer monolithic column was used for in-tube solid-phase microextraction (SPME) to efficiently adsorb trace sulfonamides from food samples. A novel method combining MOF-polymer-monolithic-column-based SPME with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was successfully developed. The linear range was from 0.015 to 25.0 µg/L, with low limits of detection of 1.3–4.7 ng/L and relative standard deviations (RSDs) of < 6.1%. Eight trace sulfonamides in fish and chicken samples were determined, with recoveries of the eight analytes ranging from 85.7% to 113% and acceptable RSDs of < 7.3%. These results demonstrate that the novel MOF-polymer-monolithic-column-based SPME coupled with UHPLC-MS/MS is a highly sensitive, practical, and convenient method for monitoring trace sulfonamides in food samples previously extracted with an adequate solvent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3